In the microscopic treatment of matter, the particles, for example, molecules and electrons, are distributed in a system of energy levels. How the particles distribute among the energy levels determines the behavior of the system in a significant way. Regarding to applications with solar energy, an understanding of Maxwell-Boltzmann statistics and Fermi-Dirac statistics is essential. Maxwell-Boltzmann statistics is valid for a system of distinguishable particles in a system of energy levels allowing unlimited occupancy; whereas Fermi-Dirac statistics is valid for a system of indistinguishable particles in a system of energy levels allowing limited occupancy, that is, systems satisfying the Pauli exclusion principle.
The starting point of the derivation is the Boltzmann expression of entropy,
S = kB ln W, (D.1)
where kB is Boltzmann’s constant and W is the total number of configurations of the system.
Consider a situation of N particles in a system consisting of a series of energy levels. The occupancy number of the *th level is N^ The energy of the *th level is Ei, and the total energy of the system is E. We have the conditions
E = £* Ni Ei.
The condition of equilibrium is that the entropy, Eq. D.1, reaches maximum under the two constraints in Eq. D.2.
![]() |
![]() |
![]() |
![]() |
![]() |
Intuitively, the more uniform the distribution, the greater the randomness, or the greater the entropy. However, the condition of constant total energy adds another condition: It is preferable to have more particles in the levels of lower energy and less particles in the levels of higher energy. The problem can be resolved using Fermat’s theorem together with the Lagrange multiplier method. Introducing two Lagrange multipliers a and в, the condition of equilibrium is
The distribution can be found by combining the solution of Eq. D.3 with the two constraints in Eqs. D.1 and D.2.
During the calculation, one needs an approximate value of the derivative of ln N! for large N. This can be simply taken as
dN in N! « ln N! – ln(N – 1)! « ln N. (D.4)
D. 1 Maxwell—Boltzmann Statistics
In the case of Maxwell-Boltzmann statistics, applicable to classical atomic systems, the particles are distinguishable, and the number of particles per energy level is unlimited. The number of possible configurations W can be determined as follows.
Suppose that N particles are placed into containers with occupation numbers N1, N2, … Ni, … and so on. Consider now the number of ways to place N1 particles into container 1. First, choose one of the N particles for the first position in container 1, that is, N ways. Next, choose one of the remaining N — 1 particles for the second position in container 1. This generates N — 1 ways. Altogether there are N(N — 1) ways. By continuing the process, the total number of ways is N(N — 1)(N — 2)…(N — N1 — 1). However, the placement of particles in the container is arbitrary. Therefore, there is a N1 !-fold redundancy. The net ways of placement are given as
W N (N — 1)(N — 2)…(N — ,¥, — 1) N! (D5)
Wl =————————- N!———————- = (N — N1)! N,!. (D’5)
Similarly, the number of ways of placing the remaining N — N1 particles into container 2 generates a factor
|
|
|
|
|
|
Similarly,
|
|||
|
|
||
Continuing the process further, finally we find
N!
W = W1 W2 …Wi… = —
i Ni!
The entropy is
S = kB ln W = kB ln N! —J2 ln Ni! The condition of thermal equilibrium gives
|
|
|
|
|
|
The result is
kB ln Ni = —a — ЗЕі, (D.11)
The meaning of the parameter З can be interpreted based on thermodynamics. Because the system is under the condition of constant temperature and constant volume, according to Eq. 6.28, we have
dE = TdS. (D.12)
By treating S and E as variables, comparing Eq. D.3 and Eq. D.12, we find, heuristi – cally,
З = T. (D.13)
The constant a can be determined by the condition that the total number of particles is N. Equation D.11 can be rewritten as
|
|
|
|
![]() |
|
|
|
![]() |
|
, —Ei
pi = Z ехП kBBTT
Obviously, the sum of all probabilities is 1,
^ Pi =1
Electrons are fermions obeying the Pauli exclusion principle. Each state can only be occupied by one electron. The electrons satisfies Fermi-Dirac statistics.
For each energy value, there can be multiple states. For example, each electron can have two spin states that have the same energy level. Let the degeneracy, that is, the number of states at energy Ei, be gi. The number of electrons staying at that energy level, Ni, should not exceed gi. The number of different ways of occupation in the gi states is
gi ■
(gi – Ni)! Ni! ’
which is a special case of Eq. D.5. Following Eq. D.3, we obtain
кв [ln(gi – Ni) – lnNi] = a + f3Ei,
or
|
|
|
|
|
|
|
|
|
|
Using Eq. D.13 and introducing the probability pi = Ni/gi,
|
|
|
|
|
|
|
|
|
|
|
|
Equation D.22 is called the Fermi function. At the Fermi level Ep, the probability is 1/2. Apparently,
pi ^ t Ei ^ ep 5
pi ^ ° Ei ^ ep ■
At low temperature, where квТ ^ Ep, the Fermi-Dirac statistics becomes
At high temperatures, or at high energy levels (Ei — Ep)/квТ ^ 1, the Fermi-Dirac statistics reduces to Maxwell-Boltzmann statistics,
Ei
квТ
AM1.5 Reference Solar Spectrum
To facilitate testing of solar photovoltaic devices, American Society for Testing and Materials (ASTM) in conjenction with the photovoltaic (PV) industry and government research and development laboratories developed and defined two standard terrestrial solar spectral irradiance distributions: The standard direct normal spectral irradi – ance and the standard global spectral irradiance, incorporated into a single document, ASTM G-173-03; see Section 5.2.1.
The original data was presented in wavelength scale. The following table is presented in photon energy scale. The first column is photon energy in eV. The second column is the extraterrestrial solar radiation spectrum, AM0. The third column is the direct normal solar radiation spectrum. The fourth column is the global solar radiation spectrum, including radiation scattered from the sky. All spectral data are presented in watts per square meter per eV (W/m2-eV).
Table E.1: AM1.5 Reference Solar Spectrum (W/m2 eV)
|
e (eV) |
AM0 |
Direct |
Global |
e (eV) |
AM0 |
Direct |
Global |
0.62 |
380 |
214 |
218 |
1.02 |
577 |
487 |
510 |
0.63 |
385 |
46 |
47 |
1.03 |
579 |
485 |
508 |
0.64 |
399 |
2 |
2 |
1.04 |
577 |
461 |
483 |
0.65 |
409 |
0 |
0 |
1.05 |
582 |
467 |
489 |
0.66 |
406 |
0 |
0 |
1.06 |
577 |
398 |
418 |
0.67 |
427 |
0 |
0 |
1.07 |
584 |
245 |
257 |
0.68 |
433 |
31 |
31 |
1.08 |
579 |
204 |
213 |
0.69 |
447 |
214 |
219 |
1.09 |
583 |
141 |
148 |
0.70 |
456 |
367 |
376 |
1.10 |
578 |
129 |
135 |
0.71 |
460 |
396 |
406 |
1.11 |
581 |
298 |
314 |
0.72 |
477 |
448 |
460 |
1.12 |
578 |
445 |
468 |
0.73 |
482 |
459 |
471 |
1.13 |
571 |
506 |
534 |
0.74 |
494 |
470 |
483 |
1.14 |
576 |
523 |
553 |
0.75 |
497 |
472 |
485 |
1.15 |
578 |
532 |
563 |
0.76 |
507 |
489 |
503 |
1.16 |
584 |
539 |
571 |
0.77 |
513 |
479 |
493 |
1.17 |
586 |
546 |
578 |
0.78 |
516 |
474 |
487 |
1.18 |
586 |
550 |
582 |
0.79 |
523 |
507 |
522 |
1.19 |
589 |
553 |
587 |
0.80 |
528 |
505 |
520 |
1.20 |
591 |
555 |
589 |
0.81 |
529 |
472 |
486 |
1.21 |
589 |
552 |
586 |
0.82 |
530 |
392 |
404 |
1.22 |
597 |
558 |
593 |
0.83 |
533 |
212 |
218 |
1.23 |
592 |
553 |
587 |
0.84 |
535 |
147 |
151 |
1.24 |
599 |
559 |
595 |
0.85 |
536 |
116 |
119 |
1.25 |
600 |
546 |
581 |
0.86 |
538 |
52 |
53 |
1.26 |
599 |
484 |
514 |
0.87 |
541 |
20 |
21 |
1.27 |
596 |
454 |
482 |
0.88 |
544 |
1 |
1 |
1.28 |
595 |
360 |
382 |
0.89 |
547 |
0 |
0 |
1.29 |
593 |
268 |
284 |
0.90 |
547 |
0 |
0 |
1.30 |
601 |
233 |
247 |
0.91 |
549 |
4 |
4 |
1.31 |
593 |
229 |
243 |
0.92 |
551 |
204 |
211 |
1.32 |
607 |
149 |
158 |
0.93 |
553 |
327 |
340 |
1.33 |
603 |
351 |
374 |
0.94 |
558 |
429 |
447 |
1.34 |
596 |
471 |
503 |
0.95 |
564 |
494 |
516 |
1.35 |
602 |
408 |
435 |
0.96 |
562 |
528 |
552 |
1.36 |
599 |
422 |
450 |
0.97 |
575 |
488 |
510 |
1.37 |
596 |
430 |
460 |
0.98 |
573 |
516 |
540 |
1.38 |
598 |
471 |
504 |
0.99 |
574 |
547 |
573 |
1.39 |
596 |
545 |
585 |
1.00 |
576 |
545 |
571 |
1.40 |
591 |
544 |
584 |
1.01 |
579 |
522 |
547 |
1.41 |
590 |
544 |
584 |
e (eV) |
AM0 |
Direct |
Global |
e (eV) |
AM0 |
Direct |
Global |
1.42 |
591 |
544 |
586 |
1.82 |
556 |
471 |
520 |
1.43 |
579 |
532 |
572 |
1.83 |
554 |
467 |
517 |
1.44 |
596 |
544 |
586 |
1.84 |
553 |
464 |
513 |
1.45 |
554 |
504 |
543 |
1.85 |
555 |
464 |
512 |
1.46 |
589 |
534 |
577 |
1.86 |
556 |
456 |
504 |
1.47 |
593 |
530 |
573 |
1.87 |
552 |
443 |
489 |
1.48 |
589 |
507 |
548 |
1.88 |
519 |
422 |
467 |
1.49 |
590 |
471 |
508 |
1.89 |
519 |
420 |
465 |
1.50 |
586 |
453 |
488 |
1.90 |
538 |
432 |
477 |
1.51 |
587 |
439 |
474 |
1.91 |
536 |
425 |
471 |
1.52 |
594 |
481 |
521 |
1.92 |
542 |
439 |
486 |
1.53 |
587 |
521 |
566 |
1.93 |
533 |
430 |
474 |
1.54 |
585 |
514 |
558 |
1.94 |
539 |
430 |
475 |
1.55 |
584 |
514 |
557 |
1.95 |
535 |
422 |
467 |
1.56 |
581 |
509 |
555 |
1.96 |
526 |
403 |
446 |
1.57 |
592 |
525 |
572 |
1.97 |
537 |
403 |
446 |
1.58 |
586 |
526 |
572 |
1.98 |
519 |
401 |
442 |
1.59 |
587 |
526 |
572 |
1.99 |
528 |
406 |
450 |
1.60 |
583 |
519 |
567 |
2.00 |
521 |
404 |
448 |
1.61 |
576 |
452 |
493 |
2.01 |
511 |
396 |
439 |
1.62 |
587 |
212 |
229 |
2.02 |
519 |
400 |
443 |
1.63 |
584 |
414 |
452 |
2.03 |
518 |
397 |
441 |
1.64 |
583 |
517 |
564 |
2.04 |
522 |
396 |
440 |
1.65 |
578 |
511 |
560 |
2.05 |
513 |
386 |
430 |
1.66 |
577 |
508 |
557 |
2.06 |
510 |
383 |
427 |
1.67 |
560 |
488 |
535 |
2.07 |
513 |
379 |
422 |
1.68 |
575 |
485 |
532 |
2.08 |
511 |
373 |
413 |
1.69 |
570 |
447 |
490 |
2.09 |
507 |
369 |
411 |
1.70 |
565 |
414 |
454 |
2.10 |
481 |
347 |
386 |
1.71 |
570 |
427 |
469 |
2.11 |
504 |
376 |
420 |
1.72 |
559 |
384 |
421 |
2.12 |
509 |
380 |
424 |
1.73 |
562 |
477 |
526 |
2.13 |
499 |
369 |
411 |
1.74 |
566 |
485 |
535 |
2.14 |
492 |
356 |
398 |
1.75 |
567 |
479 |
527 |
2.15 |
487 |
351 |
393 |
1.76 |
561 |
462 |
509 |
2.16 |
496 |
358 |
400 |
1.77 |
561 |
467 |
514 |
2.17 |
473 |
342 |
383 |
1.78 |
564 |
444 |
491 |
2.18 |
484 |
354 |
396 |
1.79 |
565 |
420 |
462 |
2.19 |
466 |
342 |
383 |
1.80 |
555 |
396 |
434 |
2.20 |
468 |
343 |
385 |
1.81 |
556 |
471 |
519 |
2.21 |
458 |
336 |
377 |
e (eV) |
AM0 |
Direct |
Global |
e (eV) |
AM0 |
Direct |
Global |
2.22 |
458 |
337 |
379 |
2.62 |
365 |
241 |
284 |
2.23 |
466 |
342 |
385 |
2.63 |
349 |
229 |
271 |
2.24 |
460 |
337 |
381 |
2.64 |
356 |
233 |
277 |
2.25 |
455 |
333 |
376 |
2.65 |
339 |
221 |
263 |
2.26 |
448 |
326 |
368 |
2.66 |
349 |
228 |
271 |
2.27 |
451 |
328 |
371 |
2.67 |
355 |
230 |
272 |
2.28 |
443 |
322 |
365 |
2.68 |
355 |
229 |
273 |
2.29 |
415 |
302 |
342 |
2.69 |
341 |
218 |
261 |
2.30 |
434 |
316 |
358 |
2.70 |
342 |
218 |
261 |
2.31 |
447 |
323 |
366 |
2.71 |
347 |
220 |
265 |
2.32 |
415 |
299 |
339 |
2.72 |
333 |
212 |
253 |
2.33 |
443 |
318 |
361 |
2.73 |
324 |
204 |
245 |
2.34 |
433 |
310 |
354 |
2.74 |
344 |
215 |
260 |
2.35 |
392 |
282 |
320 |
2.75 |
338 |
210 |
254 |
2.36 |
429 |
309 |
351 |
2.76 |
325 |
201 |
244 |
2.37 |
409 |
295 |
335 |
2.77 |
320 |
198 |
240 |
2.38 |
394 |
283 |
323 |
2.78 |
298 |
182 |
221 |
2.39 |
356 |
254 |
291 |
2.79 |
304 |
184 |
226 |
2.40 |
403 |
288 |
330 |
2.80 |
302 |
182 |
225 |
2.41 |
392 |
279 |
320 |
2.81 |
284 |
171 |
209 |
2.42 |
414 |
294 |
337 |
2.82 |
248 |
148 |
183 |
2.43 |
406 |
286 |
328 |
2.83 |
274 |
163 |
201 |
2.44 |
396 |
277 |
319 |
2.84 |
286 |
170 |
210 |
2.45 |
410 |
286 |
328 |
2.85 |
248 |
146 |
181 |
2.46 |
386 |
268 |
309 |
2.86 |
255 |
149 |
185 |
2.47 |
377 |
263 |
304 |
2.87 |
219 |
127 |
158 |
2.48 |
385 |
269 |
311 |
2.88 |
180 |
104 |
130 |
2.49 |
394 |
274 |
316 |
2.89 |
234 |
135 |
168 |
2.50 |
395 |
274 |
318 |
2.90 |
241 |
137 |
172 |
2.51 |
383 |
266 |
308 |
2.91 |
252 |
143 |
179 |
2.52 |
371 |
255 |
297 |
2.92 |
247 |
139 |
175 |
2.53 |
372 |
256 |
296 |
2.93 |
251 |
141 |
178 |
2.54 |
357 |
244 |
283 |
2.94 |
258 |
144 |
182 |
2.55 |
340 |
231 |
269 |
2.95 |
237 |
131 |
166 |
2.56 |
378 |
256 |
298 |
2.96 |
238 |
130 |
166 |
2.57 |
385 |
258 |
302 |
2.97 |
248 |
135 |
172 |
2.58 |
381 |
254 |
297 |
2.98 |
249 |
135 |
173 |
2.59 |
378 |
250 |
293 |
2.99 |
236 |
127 |
163 |
2.60 |
367 |
243 |
285 |
3.00 |
244 |
130 |
168 |
2.61 |
371 |
246 |
289 |
3.01 |
234 |
123 |
159 |
e (eV) |
AM0 |
Direct |
Global |
e (eV) |
AM0 |
Direct |
Global |
3.02 |
208 |
109 |
142 |
3.42 |
106 |
39 |
59 |
3.03 |
236 |
123 |
160 |
3.43 |
101 |
36 |
55 |
3.04 |
217 |
112 |
146 |
3.44 |
110 |
39 |
60 |
3.05 |
221 |
114 |
148 |
3.45 |
82 |
29 |
45 |
3.06 |
229 |
117 |
153 |
3.46 |
84 |
29 |
46 |
3.07 |
227 |
115 |
151 |
3.47 |
92 |
32 |
50 |
3.08 |
235 |
119 |
157 |
3.48 |
108 |
37 |
58 |
3.09 |
226 |
113 |
150 |
3.49 |
115 |
39 |
62 |
3.10 |
213 |
106 |
140 |
3.50 |
111 |
37 |
59 |
3.11 |
161 |
79 |
106 |
3.51 |
95 |
32 |
50 |
3.12 |
94 |
46 |
61 |
3.52 |
99 |
32 |
52 |
3.13 |
156 |
75 |
101 |
3.53 |
105 |
34 |
55 |
3.14 |
114 |
54 |
73 |
3.54 |
95 |
30 |
49 |
3.15 |
98 |
46 |
63 |
3.55 |
90 |
28 |
46 |
3.16 |
160 |
75 |
102 |
3.56 |
90 |
28 |
46 |
3.17 |
157 |
73 |
100 |
3.57 |
93 |
29 |
47 |
3.18 |
139 |
64 |
88 |
3.58 |
92 |
28 |
46 |
3.19 |
121 |
56 |
77 |
3.59 |
82 |
25 |
41 |
3.20 |
124 |
56 |
78 |
3.60 |
87 |
26 |
43 |
3.21 |
121 |
54 |
75 |
3.61 |
98 |
29 |
48 |
3.22 |
114 |
51 |
71 |
3.62 |
95 |
28 |
47 |
3.23 |
85 |
38 |
53 |
3.63 |
90 |
26 |
44 |
3.24 |
104 |
46 |
64 |
3.64 |
98 |
27 |
46 |
3.25 |
140 |
61 |
85 |
3.65 |
90 |
25 |
43 |
3.26 |
130 |
56 |
79 |
3.66 |
86 |
23 |
41 |
3.27 |
150 |
64 |
91 |
3.67 |
77 |
20 |
35 |
3.28 |
149 |
63 |
90 |
3.68 |
75 |
20 |
34 |
3.29 |
126 |
53 |
76 |
3.69 |
84 |
22 |
39 |
3.30 |
117 |
49 |
70 |
3.70 |
90 |
23 |
41 |
3.31 |
105 |
43 |
62 |
3.71 |
85 |
21 |
36 |
3.32 |
119 |
48 |
70 |
3.72 |
86 |
21 |
38 |
3.33 |
131 |
53 |
77 |
3.73 |
88 |
21 |
38 |
3.34 |
130 |
52 |
76 |
3.74 |
87 |
20 |
36 |
3.35 |
141 |
56 |
82 |
3.75 |
94 |
22 |
39 |
3.36 |
127 |
50 |
73 |
3.76 |
91 |
21 |
38 |
3.37 |
135 |
52 |
77 |
3.77 |
81 |
18 |
32 |
3.38 |
139 |
53 |
79 |
3.78 |
84 |
17 |
31 |
3.39 |
123 |
47 |
70 |
3.79 |
86 |
18 |
34 |
3.40 |
113 |
43 |
64 |
3.80 |
81 |
16 |
30 |
3.41 |
112 |
42 |
63 |
3.81 |
70 |
13 |
23 |
e (eV) |
AM0 |
Direct |
Global |
e (eV) |
AM0 |
Direct |
Global |
3.82 |
64 |
12 |
23 |
4.12 |
31 |
0 |
0 |
3.83 |
56 |
10 |
19 |
4.13 |
33 |
0 |
0 |
3.84 |
59 |
10 |
18 |
4.14 |
35 |
0 |
0 |
3.85 |
60 |
10 |
19 |
4.15 |
33 |
0 |
0 |
3.86 |
65 |
11 |
20 |
4.16 |
37 |
0 |
0 |
3.87 |
64 |
9 |
16 |
4.17 |
34 |
0 |
0 |
3.88 |
59 |
8 |
16 |
4.18 |
38 |
0 |
0 |
3.89 |
57 |
7 |
14 |
4.19 |
39 |
0 |
0 |
3.90 |
65 |
8 |
14 |
4.20 |
36 |
0 |
0 |
3.91 |
56 |
7 |
13 |
4.21 |
36 |
0 |
0 |
3.92 |
47 |
5 |
9 |
4.22 |
38 |
0 |
0 |
3.93 |
52 |
5 |
10 |
4.23 |
36 |
0 |
0 |
3.94 |
55 |
5 |
9 |
4.24 |
38 |
0 |
0 |
3.95 |
57 |
4 |
8 |
4.25 |
40 |
0 |
0 |
3.96 |
54 |
4 |
8 |
4.26 |
41 |
0 |
0 |
3.97 |
55 |
3 |
7 |
4.27 |
38 |
0 |
0 |
3.98 |
58 |
3 |
6 |
4.28 |
32 |
0 |
0 |
3.99 |
50 |
2 |
5 |
4.29 |
24 |
0 |
0 |
4.00 |
39 |
1 |
3 |
4.30 |
20 |
0 |
0 |
4.01 |
46 |
1 |
3 |
4.31 |
22 |
0 |
0 |
4.02 |
49 |
1 |
2 |
4.32 |
23 |
0 |
0 |
4.03 |
47 |
1 |
2 |
4.33 |
15 |
0 |
0 |
4.04 |
43 |
0 |
1 |
4.34 |
10 |
0 |
0 |
4.05 |
44 |
0 |
1 |
4.35 |
13 |
0 |
0 |
4.06 |
48 |
0 |
1 |
4.36 |
19 |
0 |
0 |
4.07 |
46 |
0 |
0 |
4.37 |
20 |
0 |
0 |
4.08 |
47 |
0 |
0 |
4.38 |
20 |
0 |
0 |
4.09 |
41 |
0 |
0 |
4.39 |
17 |
0 |
0 |
4.10 |
33 |
0 |
0 |
4.40 |
13 |
0 |
0 |
4.11 |
34 |
0 |
0 |
4.41 |
9 |
0 |
0 |
xThe mathematics of Hubbert’s theory is similar to the equations created by Pierre Francois Ver – hurst in 1838 to quantify Malthus’s theory on population growth [85].
[2]By definition, sechx = 1/cosh x = 2/(ex + e x).
[3]In the literature, the notation FF is often used to represent the fill factor, a factor of efficiency in the treatment of solar cells by Shockley and Queisser. To maintain consistency of notations, we use nf instead.
[4] , „ x. xc + ln C
nd — — In (C eXc) ———————– — 1,
xc xc
because the expression C varies much less than the exponential. Therefore, at very low cell temperatures, if there is no other recombination mechanism other than radiative recombination, the open-circuit voltage approaches the band gap energy in volts and the nominal efficiency approaches the ultimate efficiency.
The reverse saturation current in Eq. 9.38 is the absolute limit of the observed reverse saturation current (Eq. 9.29). In addition to radiative recombination, there are other types of recombination processes that increase the reverse saturation current and then reduce the efficiency of solar cells; see Section 9.3.