From GIXRD, TEM and ED results, it can be concluded that the Ti-implanted Si layer with a dose of 1015 cm-2(average volume concentration of 3-1020 cm-3 in the implanted thickness) and further PLM annealed at the highest energy density (0.8 Jcm-2) presents an excellent reconstruction of the crystal structure. Higher doses have a polycrystalline structure with decreasing grain size. RBS
measurements show that most of the Ti is incorporated at interstitial positions. Sheet resistance and Hall mobility measurements prove the existence of an IB energetically located about 0.36-0.38eV below the conduction band. In this IB, carriers behave as holes with high concentration, in the same order than Ti concentration, and low mobility. Holes remains confined in the implanted layer giving a strong laminar conductivity. IB physical thickness goes from the surface to the deep when the Ti profile has the value of the Mott concentration. Sheet resistance has been simulated with the ATLAS code and a specifically developed analytical model that corroborates the ATLAS simulation. The analytical model fits also the Hall mobility. Both the sheet resistance and mobility shows a very good accordance with the experimental data. All these results mean that Ti-implanted Si with the structural and electrical characteristics could be a material of choice for future IBSC.
Acknowledgements Authors would like to acknowledge the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C. A.C. T.I. for ToF-SIMS measurements, the Center for Microanalysis of Materials of the Universidad Autonoma de Madrid for RBS measurements, C. A.I. de Difraccin de Rayos X of the Universidad Complutense de Madrid for GIXRD measurements, C. A.I. de Microscopa de la Universidad Complutense de Madrid for TEM analysis and C. A.I. de Tecnicas Fisicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was made possible thanks to the FPI (Grant No. BES-2005-7063) of the Spanish Ministry of Education and Science. This work was partially supported by the Projects NUMANCIA-2 (No. S2009/ENE1477) funded by the Comunidad de Madrid GENESIS-FV (No. CSD2006-00004) funded by the Spanish Consolider National Program and by U. C.M.-C. A.M. under Grant CCG07- UCM/TIC-2804.
References [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] 14
15. K. Sanchez, I. Aguilera, P. Palacios, P. Wahnon, Phys. Rev. B 79(16), 165203 (2009)
16. R. L. Petritz, Phys. Rev. 110(6), 1254 (1958)
17. D. C. Look, J. Appl. Phys. 104(6), 063718 (2008)
18. D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, K. R. Evans, Phys. Rev. B 42(6), 3578 (1990)
19. D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, R. J. Molnar, Phys. Rev. Lett. 79(12), 2273 (1997)
20. C. W. White, S. R. Wilson, B. R. Appleton, F. W. Young, J. Appl. Phys. 51(1), 738 (1980)
21. J. Olea, G. Gonzalez-Diaz, D. Pastor, I. Martil, J. Phys. D-Appl. Phys. 42(8), 085110 (2009)
22. J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andres, I. Martil, Gonzalez-Diaz, J. Appl. Phys. 107, 103524 (2010)
23. ATLAS, Device Simulator Framework distributed by Silvaco Data Systems Inc., 4701 Patrick Henry Device, Bldg 6, Santa Clara, CA 95054
24. PSPICE, Cadence Designs Systems Inc., 2655 Seely Avenue, San Jos, CA 95134
25. D. W. Koon, Rev. Sci. Instruments 77(9), 094703 (2006)
26. G. Gonzalez-Diaz, J. Olea, I. Martil, D. Pastor, A. Marti, E. Antolin, A. Luque, Sol. Energ. Mater. Sol. Cell. 93(9), 1668 (2009)
27. FJ. Blatt, Physics of Electronic Conduction in Solids (Mac Graw Hill, New York, 1968)
28. E. Antolin, A. Marti, J. Olea, D. Pastor, G. Gonzalez-Diaz, I. Martil, A. Luque, Appl. Phys. Lett. 94(4), 042115 (2009)
Ab initio calculations, 287, 333 Absorber, 103 Absorptance, 97 Absorption, 144, 240, 241 Absorption coefficient, 97, 116 Absorption enhancement, 142, 143, 145, 146, 150
Accelerated ageing tests, 54 Acceptance angle losses, 68 Acoustic phonon scattering, 246 AC-system efficiencies, 1 Activation energy, 340
Advanced characterization techniques, MJSC, 45
AERONET database, 15 Alexander Maish, 76 AlGaN, 313 AM1.5G, 281 Amorphization, 325
Amorphous silicon thin film solar cells, 150 AM1.5 solar spectrum, 105 Analytical model, 336 Anderson, 287
Angular distribution function, ADF, 98, 119
Antiferromagnetic, 294
Antireflective coating, 96, 113, 114, 125
Antisite point defects, 281
(Al)GaInAs, 9
(Al)GaInP, 9
Aperture frame, 68
ARC, 114, 115
Aromatic hydrocarbon derivatives, 166 Arsenic, 315
a-Si:H, 101, 134, 144, 146, 147, 149, 280 a-Si:H top cell, 147, 148 ATLAS, 333
Atmospheric refraction corrections, 87
Atomic reservoirs, 290 Auger processes, 231 Auger related scattering, 246 Automatic error collection, 81 Autonomous tracking control, 76
Back electrical contact, 118 Backlash, 64
Back reflector, 96, 105, 113, 116-118, 125
Balance of system, BOS, 192
Banbdgap, 122
Band-anticrossing model, 283
Band-like absorption spectrum, 167
Band mixing, 233
Barrier height, 332
Bi-exciton recombination, 246
Bilayer, 329
Bilayer decoupling, 341
Binary chalcogenides, 288
Black body, 279
Bound state, 295
BSQ Solar, 73
Buffer, 11
Calibration model, 79 Carissa Plains plant, 76 Carrier cooling, 193 Carrier lifetime, 344 CdS, 201,297 CdSe, 197, 201 CdSe/CdTe, 197 CdTe, 193, 197, 280-282 Cell performance, 106 CGS/CIGS, 122 Chalcogen, 288
A. B. Cristobal Lopez et al. (eds.), Next Generation of Photovoltaics, Springer Series in Optical Sciences 165, DOI 10.1007/978-3-642-23369-2, © Springer-Verlag Berlin Heidelberg 2012
Chalcopyrite, 284
Chalcopyrite-based nanowires, 297
Characterization methods, 100
Charge-carrier generation rate profile, 101
Chemical potential, 288
CIGS, 101, 121
Closed-loop, 74
Clustered multi-start, 81
Coherence of the excitation light, 165
Coherent excitation, 166
Coherent propagation, 97
Collimated beam, 170
Colloidal, 191
Colloidal suspensions, 294
Complex refractive index, 97, 100
Concentration, 26
Concentrator solar cell, 13
Concentrix, 72
Confined states, 294
Conversion efficiency, 103
Copper phthalocyanine, CuPc, 150
Core-shell, 296
Cost, 24, 192
Coulomb coupling, 199
Croot mean square roughness, 98
Cross-section, 137
Cu(In, Ga)(S, Se)2, 282
Cu(In, Ga)Se2, 285
(Cu, Ag)(Al, Ga, In)(S, Se, Te)2, 281
Cubic film, 315
Cu-containing chalcopyrite, 280
CuGa5S8,289
CuGaS2, 282, 283, 290
CuGaSe2, 282, 283, 291
CuInx Gai_x Se2, 193
CuInS2, 282, 283
CuInSe2, 283, 297
Current matching, 106
Current voltage characteristics, 188
Current-matching, 3
Curvature of a wafer, 12
CuS, 289
Cu2S, 289
Cu2Se, 289
Decay time, 182
Decoupling, 329, 332
Defect maps, 50
Degradation, 54
Delayed fluorescence, 177, 179
Delayed sensitizer fluorescence, 182
Delocalization, 330
Densities of carriers, 332
Density functional theory, 292 Density of states (DOS), 237 Dependence on the beam diameter, 177 Depletion zone, 336 Detailed balance, 193, 229, 277 Detailed balance calculations, 2 Device-architecture, 186 Dichroic mirror, 123 Diffractive gratings, 110 Diffusion controlled, 177 Diffusive dielectric material, 113, 119 Difracting grids, 215 Diode saturation current, 341 -9,10-diphenylanthracene (DPA), 161 Dipole approximation, 240 Direct (specular) light, 100 Dislocation densities, 11 Dislocations, 10 Dispersion relation, 133, 141 Dispersion relation of a PSPP, 139, 140 Distributed Bragg reflector, 116 3D distributed model, 31, 42 Doctor blade technique, 172 Doping levels, 164 Double textures, 108 Down-conversion (DC), 184 Down-shifting (DS), 184 DSSC, 186 DSSC + UCd, 187 Dual-junction solar cells, 2, 31, 48 DX-like centres, 281 Dye, 201
Effective mass, 295
Efficiencies of triple-junction solar cell, 3 Efficiency, 106, 123, 230 Electrical network model, 8 Electrochemical potential, 284 Electroluminescence, EL, 47, 49 Electron cooling, 246 Electron-hole pair, 230 Electronic structure, 292 Electron-phonon scattering, 193, 231 Emergency stowage, 76 Emitter singlet state, 168 Encapsulation, 99
Energetically-conjoined TTA-UC, 177
Energetic schema, 159
Energy bandgaps, 101
Energy gap, 106, 121
Energy harvesting efficiencies, 17
Energy harvesting model, 15
Energy lost, 168
Enthalpy of formation, AHf, 288 Epitaxy, 24 EPS-Tenerife, 78 Equipotential lines, 335 EtaOpt, 3, 4 EUCLIDES™ ,78 Euler angles, 80 Excitation pathways, 163 Exponential smoothing, 78 External quantum efficiency, 104, 109, 119, 169
Extinction cross-section, 137
Fabry-Perot resonance, 146, 147, 149 FEMOS, 101, 111 Fermi level, 230, 293, 331 Fermi’s golden rule, 246 Ferromagnetic, 294 Finite-depth-well effective mass approximation, 296 Finite difference time domain, 108 Finite element method (FEM), 101 Flexure floor, 73 Foundation, 68 Fraunhofer ISE, 2
Frolich interaction Hamiltonian, 244 Front surface field (FSF), 5 Function F, 339
Ga, 312 GaAs, 5, 26
GaAs single-junction concentrator solar cell, 2 GaAs solar cells, 150 GaInNAs, 17 GaInP, 2
GaInP / GaAs dual-junction solar cell, 7,31 GaInP / GaInAs / Ge triple-junction solar cell, 14, 43
GaInP/GaAs dual-junction solar cell, 23 GaMnN, 311 GaN, 309 Ga2S3,289 GaS, 289 GaSe, 289 Ga2Se3, 289 Ge bottom cell, 9 Geotechnical analysis, 68 Ge substrate, 25, 28 Glancing-Incidence X-Ray Diffraction, GIXRD, 323
Glass transition temperature, 171 Global absorption, 142
Glove-box, 170
Grain boundaries, 281, 282
1D grating, 111
Grating equation, 110
Grid parity, 132
Groove period, 110
Guided mode, 134, 138, 139, 141, 144
Hall-effect, 287 Hall mobility, 339 3D-harmonic oscillator, 296 Haze, 98, 108, 109, 119 Heptamer (OF7), 161 Heterojunction, 343 High-concentration photovoltaics, 1 Hot carriers, 192 Hot excitons, 192
Hybrid multi-terminal configuration, 123 Hybrid sun tracking controllers, 77
IBSC, See Intermediate band Ideal efficiency of a multi-junction solar cell, 14
Ideality factors, 283, 285
I – III-VI2,281
II – VI QDs, 200
III – V multi-junction solar cells, 2, 23 III-V QDs, 200
III-V semiconductor, 193 Impact ionization, 193 Impurity approach, 287 Impurity bands, 287 InAlGaAs space layers, 253 InAs, 197, 201 InAs/GaAs QDs, 234 Incomplete selectivity of absorption coefficients, 286 InGaN, 309 InN, 314 InP, 197, 201 Intensity depence, 176 Intensity dependence of the UC, 160 Interband, 196 Interband tunneling, 5 Interdiffusion, 296, 298 Interference, 97, 116 Intermediate band, 209, 251 ab-initio, 225 bandwidth, 214 bulk systems, 215 chalcopyrite semiconductors, 253 deep centres, 220
dilute II-VI oxide semiconductors, 253 GaNAs, 222
highly mismatched alloys, 222, 253 In2S3, 223 InGaN, 220, 253 limiting efficiency, 209 metallization of solar cells, 268 model, 213
molecular approach, 223 optimum gaps, 252 photon selectivity, 215 quantum dot, 215, 216, 251 quantum dot die manufacture, 265 quantum efficiency, 217, 270 quantum wells, 217 quasi-Fermi levels, 214 role of the emitters, 212 silicon, 253 thin films, 220 two photon absorption, 272 voltage preservation, 211, 272 ZnTe, 222, 253
Intermediate band formation, 235 Intermediate band solar cell, 230, 321 Internal energy conversion channel, 168 Interstitial, 329
Inter-system crossing (ISC), 159
Intraband, 196
Intrinsic defects, 281
Inverse Auger, 193
Inverted methamorphic, 4, 25
Ion implantation, 322
IPCE curves, 184
IRL, intermediate reflecting layer, 147, 149 Isofoton, 67
IV – VI QDs, 200
Kinetic, 298
Knudsen cells, 312
Koopman spiral, 82
kppw code, 234, 249
k • p theory, 231, 232
Kretschmann configuration, 140, 150
KrF excimer laser, 323
Lambertian (cosine) function, 119 LA phonons, 245 Lateral current, 35, 39 Lattice-matched, 23, 25
Lattice-matched triple-junction solar cell, 2, 4, 17
Learning coefficient, 29
Least squares, 81 LED-like approach, 41 Levenberg-Marquardt, LM, 81 Light absorption, 106 Light emitting diode, LED, 53, 280 Light management, 124, 215 Light profile, 31, 33, 41 Light scattering, 96, 103, 106 Light trapping, 96, 103, 111, 132, 133, 144, 147,152
Limiting efficiency, 211 Linear function, 176 Local absorption, 142 Local mobility, 165 Local temperature, 177 Local viscosity, 171 LO-phonon, 244 LSC, 189
LSPP, localized surface plasmon polariton, 132, 133, 135, 136, 138, 141, 143, 144,148 LTSpice, 5, 8 Luminiscence, 283 Lumped equivalent circuit, 344
Magnetic properties, 294 Magnetoresistance, 287 Makov-Payne correction, 247 Material dispersion, 135 Maximum service wind speed, MSWS, 64 Maxwell equations, 101 MBE, See also Molecular beam epitaxy, 311, 312
^c-Si, 134, 149 ^c-Si bottom cell, 147 /xc-SiH, 101 Mean offsets, 88
Mean Time to Failure, MTTF, 53, 55 Metallated porphyrin macrocycles (MOEP), 159
Metallisation, 14 Metamorphic, 4
Metamorphic triple-junction solar cell, 12, 17
Method of discretisation, 100
Micromorph, 121
Minibands, 238, 294
Minimum enclosing circle, MEC, 71
Minority carrier, 283
Mn, 310
Model based calibrated approach, 77 Model free predictive approach, 77 Modulated photonic crystal, 117, 118 Molar concentration dependence, 179
Molar ratio, 173, 179
Molecular beam epitaxy, 251, 253, 278
Molecular couples, 186
Momentum, 194
Mott, 287
Mott limit, 344
Mott transition, 209, 215
MOVPE, 25
Multicomponent organic systems, 174 Multiexcitons, 196
Multijunction devices, 96, 121, 125, 184 Multijunction solar cell, 105, 121 Multilayer structures, 97 Multiple Exciton Generation, MEG, 191
Nanocrystalline, 327 Nanodisc, 145, 146, 148, 149 Nanoparticle, 112, 125, 133, 134, 138, 144-147
Nanostructure, 192, 294 Nanostructuring approach, 294 Nanotubes, 199 Nanowires, 296
Near field, 136, 137, 140, 144, 146 Neutral complex, 281 Nitrogen, 312 Noble metal, 297 Non-coherent excitation, 166 Non-coherent photons, 158 Non-radiative channels, 179 Non-radiative recombination, 285 Non-radiative relaxation channels, 175 Non-radiative scattering, 242 Non-radiatively, 176 Non-volatile, 171 Non-volatile solvent, 172, 180 Numerical modelling, 4 Numerical simulators, 100
Off-stoichiometry, 281 Oligomer, 161, 171 One axis tracking, 62 Open-circuit photocurrent, 188 Open-circuit voltage, 103 Open-loop controllers, 76 Optical losses, 96, 103, 104, 106, 113 Optical matrix element, 240 Optical modelling, 100, 124 Optical models, 100 Optical path, 97, 103, 106, 111 Optical phonons, 244 Optoelectronic, 29
Ordered vacancy compounds, 281 Organic dye, 187
Organic solar cell, 133, 141, 150, 151, 158 Oscillator strength, 240 Otto configuration, 140, 150 Oxygen, 170
PbS, 201 PbSe, 195, 197 PbTe, 197 PdTBP, 175 л-conjugated, 185 Peak current, 35, 36, 38 Pedestal tracker, 62 Perimeter, 30, 32, 41, 42, 55 Periodic array of QD’s, 231 Periodic Born-von Karman boundary conditions, 234 Periodic surface, 110 Periodic texturisation, 101 Permittivity, 135 PF film, 181 Phonon bottleneck, 244 Phonons, 244 Phosphorescence, 162 Photocharging, 197 Photocurrent, 103, 284 Photoluminescence, PL, 47, 197 Photon conversion, 185 Photon flux, 284
Photonic crystal, 96, 113, 116, 118 Photonic-crystal-like, 125 Photon management, 131-134, 136, 141, 142, 152
Photon-sorting, 240
Photoreflectance, 296
Piezoelectric field, 233
Plane wave (PW) methodology, 234
Plasma-assisted, 312
Plasma-enhanced, 312
Plasmons, 132, 215
Plastic foil substrates, 112
Pn-junctions, 14
Point defects, 281
Pointing vector, 80
Polar coupling, 244
Polar facets, 281
Polarity change, 341
Polarizability, 137
Polarizability of a sphere, 136
Polarons, 244
Polycrystalline, 327
Polymers, 201
![]() |
![]() |
![]() |
Porous Si-oxide, 115 Positioning resolution, 64 Position Sensitive Device, PSD, 84 Poynting vector, 142 Primary axis, 79
Proportional-integral (PI) controller, 79 Pseudo-gap, 334 PSPICE, 336
PSPP, propagating surface plasmon polariton, 132, 133, 138, 140, 141, 150 Pulsed-Laser Melting, PLM, 322 Pump-probe, 196 PV modules, 99
Pyramidal-type SnO2:F superstrate, 110
Reflectance, 115 Reflection, 97
Reflection high energy electron difraction, See RHEED
Refractive index grading, 114 Refractive indices, 114 Reliability, 52-54 Residual oxygen, 170
Resonance wavelength, 135, 137, 138, 144, 146-149
Resonant frequency, 112 RHEED, 255
Root-mean-square-roughness, 98, 108 Rutherford backscattering spectrometry, RBS, 328
SPICE, 8
Spin-orbit interaction, 233
SPP, surface plasmon polariton, 132, 134, 152
Step-graded buffer, 9
Step-wise UC, 165
Stiffness, 67
Stow position, 64
Strain, 9, 12, 233
Strain compensated tunnel diodes, 13 Strain relaxation, 12 Structural bending, 66 Structural flexure, 68 Styrene matrix, 171 Sub-bandgap absorption, 123 Sub-linear, 177 Substitutional, 329 Substitutional impurities, 288, 294 SunDog®, 82 Sun ephemeris, 63 Sunlight concentration, 157 Sunlight focusing, 188 Sunlight-UC, 169
Sunlight UC organic solar cells, 183 Sun pointing sensor, 63 Sun sensor, 74 SunShine, 100, 115 SunSpear®, 84 Superlattice, 296 Superstrate, 99 Surface features, 108 Surface plasmon absorption, 116 Surface plasmon polaritons, 112 Surface reconstruction, 281 Surface treatments, 198 Surface-textured interfaces, 125
Tandem, 123
Tandem a-Si :H/^c-Si:H, 109 Tandem cell, 147 TCO substrate, 105 TE polarization, 241 Tetraanthraporphyrins, 185 Tetranaphthoporphyrins, 185 Textured interfaces, 96, 107 Texturisation, 97, 114 Thermalisation, 167 Thermalisation losses, 103, 121 Thermal stress, 185 Thermochemical, 289 Thickness, 103
Thin-film intermediate band solar cells (TF-IBSC), 277
Thin-film solar cells, 95, 124, 134, 150, 280
Threshold energy, 194
Tilt-roll tracker, 62
Time of Flight Secondary Ion Mass
Spectroscopy, ToF-SIMS, 323 Time-dependent perturbation theory, 246 Ti-Si phases, 325 Total reflection, 107 Tracking accuracy, 66 Tracking Accuracy Sensor, TAS, 84 Tracking error measurements, 77 Transient absorption, 196 Translational symmetry, 234 Transmission, 97
Transparency window, 167, 173, 175 Transparent conductive oxides, 96 Transport properties, 248 Trions, 198
Triple junction solar cell, 24, 45
Triplet harvesting, 175, 176
Triplet-triplet transfer (TTT), 161, 166
TTA-schema, 177
TTA-UC, 159
TTA-UCd, 188
Tunnel diode, 13
Tunnel diode models, 5
Tunneling, 331
Tunnel junction, 35, 45
Two axis tracking, 62
Two-photon absorption, 280
UC-couple, 177
UCd, 173, 186, 188
UC-pathway, 161
UC-sunlight concentrators, 157
UC-Гуре I, 163
UC-Гуре II, 163
Ultimate efficiency limit, 229
Ultra high concentration, UHCPV, 27, 39
Up-conversion (UC), 184
US National Climatic Center, 64
USNO MICA software, 87
Utilisation of the solar spectrum, 105, 106
Van der Pauw, 324 Van Hove singularities, 239 Vergards Law, 315 Virtual energetic levels, 167 Viscosity, 177, 180 Volatile organic solvent, 170
Wavelength-selective intermediate reflector, WSIR, 121, 123
Whisker, 297
White diffusive dielectrics, 116 White paint, 96, 119, 125 Wide gap semiconductors, 280 Wigner-Weisskopf description, 245 W-textured superstrate, 110
Wurtzite, 312
Zinc-blende film, 315 ZnTe, 283 ZnTe:O, 283
1 0 ( 2ЭФ 1 0 ( „дФ 1 й2Ф
— т r2TT C T – й sinв~ы C 2 TT = °- (5Л)
r2 or or r2 sin в ов ов r2 sin2 в о’2
The general solution to this equation reads as
1 n / b
Ф(Г; в,’) = EE’-r1 + d^k“(cos Oe’”" (5’2)
n=0m=0^ ‘
[1]Nowadays, the new efficiency record has been achieved by Solar Junction (April 2011). Its cell measured a peak efficiency of 43.5% at 418 suns.
[2] Luque-Heredia (H)
BSQ Solar. C/ del Vivero 5, 28040 Madrid, Spain e-mail: iluque@bsqsolar. com
A. B. Cristobal Lopez et al. (eds.), Next Generation of Photovoltaics,
Springer Series in Optical Sciences 165, DOI 10.1007/978-3-642-23369-2_3, © Springer-Verlag Berlin Heidelberg 2012
[3] See, for example, the programs of the past main photovoltaic conferences worldwide, http://www. photovoltaic-conference. com, http://www. ieee-pvsc. org.
[4]In fact, the open-circuit voltage of the intermediate band solar cell is slightly degraded under one – sun operation with respect to that of an equivalent, single gap device. Sunlight concentration helps recovering the voltage as limited by the main bandgap, according to detailed balance calculations of Marti and Luque [6].
[5]Remind that the expression “two-photon absorption” in the context of the intermediate band solar cell does not correspond to the traditional understanding of the three-particle process involving the simultaneous absorption of two photons via a virtual electronic state, as used in spectroscopy and fluorescence microscopy. See [9].
[6]a-Si and related concepts appear less suited for high efficiency concepts, mainly due to their intrinsic stability weaknesses under illumination and will not be considered further.
[7]For general references see, for example, [11].
[8]A good number of references on the issue of grain boundaries in thin film photovoltaic materials are collected in [14].
[9]Additionally, the width of the intermediate band within the bandgap of the host material is zero in the ideal case, see [35].
[10]Forthe case of hopping transport in chalcopyrites, see [41].
[11] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, E. E. Haller, Appl. Phys. Lett. 88(9), 092110.1 (2006)
[12] A. Marti, A. Luque, Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization (Institute of Physics Publishing, Bristol, 2004)
[13] A. Luque, A. Marti, Phys. Rev. Lett. 78(26), 5014 (1997)
[14] W. Shockley, H. J. Queisser, J. Appl. Phys. 32(3), 510 (1961)
[15] A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, J. L. Balenzategui, Appl. Phys. Lett. 87(8), 083505.1
[16] K. M. Yu, M. A. Scarpulla, R. Farshchi, O. D. Dubon, W. Walukiewicz, Nuclear Instruments Methods Phys. Res. Section B-Beam Interactions with Mater. Atoms 261(1-2), 1150 (2007)
[17] N. F. Mott, Rev. Mod. Phys. 40(4), 677-683 (1968)
[18] E. M. Conwell, Phys. Rev. 103(1), 51 (1956)
[19] R. O. Carlson, Phys. Rev. 100(4), 1075 (1955)
[20] S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, G. A. Thomas, Phys. Rev. B 48(15), 11394 (1993)
[21] A. Gaymann, H. P. Geserich, H. Vonlohneysen, Phys. Rev. Lett. 71(22), 3681 (1993)
[22] S. Hocine, D. Mathiot, Appl. Phys. Lett. 53(14), 1269 (1988)
[23] A. Luque, A. Marti, E. Antolin, C. Tablero, Phys. B-Condens. Matter 382(1-2), 320 (2006)
[24] M. Hernandez, J. Venturini, D. Zahorski, J. Boulmer, D. Debarre, G. Kerrien, T. Sarnet, C. Laviron, M. N. Semeria, D. Camel, J. L. Santailler, Appl. Surface Sc. 208, 345 (2003)