Conclusions

From GIXRD, TEM and ED results, it can be concluded that the Ti-implanted Si layer with a dose of 1015 cm-2(average volume concentration of 3-1020 cm-3 in the implanted thickness) and further PLM annealed at the highest energy density (0.8 Jcm-2) presents an excellent reconstruction of the crystal structure. Higher doses have a polycrystalline structure with decreasing grain size. RBS

measurements show that most of the Ti is incorporated at interstitial positions. Sheet resistance and Hall mobility measurements prove the existence of an IB energetically located about 0.36-0.38eV below the conduction band. In this IB, carriers behave as holes with high concentration, in the same order than Ti concentration, and low mobility. Holes remains confined in the implanted layer giving a strong laminar conductivity. IB physical thickness goes from the surface to the deep when the Ti profile has the value of the Mott concentration. Sheet resistance has been simulated with the ATLAS code and a specifically developed analytical model that corroborates the ATLAS simulation. The analytical model fits also the Hall mobility. Both the sheet resistance and mobility shows a very good accordance with the experimental data. All these results mean that Ti-implanted Si with the structural and electrical characteristics could be a material of choice for future IBSC.

Acknowledgements Authors would like to acknowledge the Nanotechnology and Surface Anal­ysis Services of the Universidad de Vigo C. A.C. T.I. for ToF-SIMS measurements, the Center for Microanalysis of Materials of the Universidad Autonoma de Madrid for RBS measurements, C. A.I. de Difraccin de Rayos X of the Universidad Complutense de Madrid for GIXRD measurements, C. A.I. de Microscopa de la Universidad Complutense de Madrid for TEM analysis and C. A.I. de Tecnicas Fisicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was made possible thanks to the FPI (Grant No. BES-2005-7063) of the Spanish Ministry of Education and Science. This work was partially supported by the Projects NUMANCIA-2 (No. S2009/ENE1477) funded by the Comunidad de Madrid GENESIS-FV (No. CSD2006-00004) funded by the Spanish Consolider National Program and by U. C.M.-C. A.M. under Grant CCG07- UCM/TIC-2804.

References [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] 14

15. K. Sanchez, I. Aguilera, P. Palacios, P. Wahnon, Phys. Rev. B 79(16), 165203 (2009)

16. R. L. Petritz, Phys. Rev. 110(6), 1254 (1958)

17. D. C. Look, J. Appl. Phys. 104(6), 063718 (2008)

18. D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, K. R. Evans, Phys. Rev. B 42(6), 3578 (1990)

19. D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, R. J. Molnar, Phys. Rev. Lett. 79(12), 2273 (1997)

20. C. W. White, S. R. Wilson, B. R. Appleton, F. W. Young, J. Appl. Phys. 51(1), 738 (1980)

21. J. Olea, G. Gonzalez-Diaz, D. Pastor, I. Martil, J. Phys. D-Appl. Phys. 42(8), 085110 (2009)

22. J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andres, I. Martil, Gonzalez-Diaz, J. Appl. Phys. 107, 103524 (2010)

23. ATLAS, Device Simulator Framework distributed by Silvaco Data Systems Inc., 4701 Patrick Henry Device, Bldg 6, Santa Clara, CA 95054

24. PSPICE, Cadence Designs Systems Inc., 2655 Seely Avenue, San Jos, CA 95134

25. D. W. Koon, Rev. Sci. Instruments 77(9), 094703 (2006)

26. G. Gonzalez-Diaz, J. Olea, I. Martil, D. Pastor, A. Marti, E. Antolin, A. Luque, Sol. Energ. Mater. Sol. Cell. 93(9), 1668 (2009)

27. FJ. Blatt, Physics of Electronic Conduction in Solids (Mac Graw Hill, New York, 1968)

28. E. Antolin, A. Marti, J. Olea, D. Pastor, G. Gonzalez-Diaz, I. Martil, A. Luque, Appl. Phys. Lett. 94(4), 042115 (2009)

Index

Ab initio calculations, 287, 333 Absorber, 103 Absorptance, 97 Absorption, 144, 240, 241 Absorption coefficient, 97, 116 Absorption enhancement, 142, 143, 145, 146, 150

Accelerated ageing tests, 54 Acceptance angle losses, 68 Acoustic phonon scattering, 246 AC-system efficiencies, 1 Activation energy, 340

Advanced characterization techniques, MJSC, 45

AERONET database, 15 Alexander Maish, 76 AlGaN, 313 AM1.5G, 281 Amorphization, 325

Amorphous silicon thin film solar cells, 150 AM1.5 solar spectrum, 105 Analytical model, 336 Anderson, 287

Angular distribution function, ADF, 98, 119

Antiferromagnetic, 294

Antireflective coating, 96, 113, 114, 125

Antisite point defects, 281

(Al)GaInAs, 9

(Al)GaInP, 9

Aperture frame, 68

ARC, 114, 115

Aromatic hydrocarbon derivatives, 166 Arsenic, 315

a-Si:H, 101, 134, 144, 146, 147, 149, 280 a-Si:H top cell, 147, 148 ATLAS, 333

Atmospheric refraction corrections, 87

Atomic reservoirs, 290 Auger processes, 231 Auger related scattering, 246 Automatic error collection, 81 Autonomous tracking control, 76

Back electrical contact, 118 Backlash, 64

Back reflector, 96, 105, 113, 116-118, 125

Balance of system, BOS, 192

Banbdgap, 122

Band-anticrossing model, 283

Band-like absorption spectrum, 167

Band mixing, 233

Barrier height, 332

Bi-exciton recombination, 246

Bilayer, 329

Bilayer decoupling, 341

Binary chalcogenides, 288

Black body, 279

Bound state, 295

BSQ Solar, 73

Buffer, 11

Calibration model, 79 Carissa Plains plant, 76 Carrier cooling, 193 Carrier lifetime, 344 CdS, 201,297 CdSe, 197, 201 CdSe/CdTe, 197 CdTe, 193, 197, 280-282 Cell performance, 106 CGS/CIGS, 122 Chalcogen, 288

A. B. Cristobal Lopez et al. (eds.), Next Generation of Photovoltaics, Springer Series in Optical Sciences 165, DOI 10.1007/978-3-642-23369-2, © Springer-Verlag Berlin Heidelberg 2012

Chalcopyrite, 284

Chalcopyrite-based nanowires, 297

Characterization methods, 100

Charge-carrier generation rate profile, 101

Chemical potential, 288

CIGS, 101, 121

Closed-loop, 74

Clustered multi-start, 81

Coherence of the excitation light, 165

Coherent excitation, 166

Coherent propagation, 97

Collimated beam, 170

Colloidal, 191

Colloidal suspensions, 294

Complex refractive index, 97, 100

Concentration, 26

Concentrator solar cell, 13

Concentrix, 72

Confined states, 294

Conversion efficiency, 103

Copper phthalocyanine, CuPc, 150

Core-shell, 296

Cost, 24, 192

Coulomb coupling, 199

Croot mean square roughness, 98

Cross-section, 137

Cu(In, Ga)(S, Se)2, 282

Cu(In, Ga)Se2, 285

(Cu, Ag)(Al, Ga, In)(S, Se, Te)2, 281

Cubic film, 315

Cu-containing chalcopyrite, 280

CuGa5S8,289

CuGaS2, 282, 283, 290

CuGaSe2, 282, 283, 291

CuInx Gai_x Se2, 193

CuInS2, 282, 283

CuInSe2, 283, 297

Current matching, 106

Current voltage characteristics, 188

Current-matching, 3

Curvature of a wafer, 12

CuS, 289

Cu2S, 289

Cu2Se, 289

Decay time, 182

Decoupling, 329, 332

Defect maps, 50

Degradation, 54

Delayed fluorescence, 177, 179

Delayed sensitizer fluorescence, 182

Delocalization, 330

Densities of carriers, 332

Density functional theory, 292 Density of states (DOS), 237 Dependence on the beam diameter, 177 Depletion zone, 336 Detailed balance, 193, 229, 277 Detailed balance calculations, 2 Device-architecture, 186 Dichroic mirror, 123 Diffractive gratings, 110 Diffusion controlled, 177 Diffusive dielectric material, 113, 119 Difracting grids, 215 Diode saturation current, 341 -9,10-diphenylanthracene (DPA), 161 Dipole approximation, 240 Direct (specular) light, 100 Dislocation densities, 11 Dislocations, 10 Dispersion relation, 133, 141 Dispersion relation of a PSPP, 139, 140 Distributed Bragg reflector, 116 3D distributed model, 31, 42 Doctor blade technique, 172 Doping levels, 164 Double textures, 108 Down-conversion (DC), 184 Down-shifting (DS), 184 DSSC, 186 DSSC + UCd, 187 Dual-junction solar cells, 2, 31, 48 DX-like centres, 281 Dye, 201

Effective mass, 295

Efficiencies of triple-junction solar cell, 3 Efficiency, 106, 123, 230 Electrical network model, 8 Electrochemical potential, 284 Electroluminescence, EL, 47, 49 Electron cooling, 246 Electron-hole pair, 230 Electronic structure, 292 Electron-phonon scattering, 193, 231 Emergency stowage, 76 Emitter singlet state, 168 Encapsulation, 99

Energetically-conjoined TTA-UC, 177

Energetic schema, 159

Energy bandgaps, 101

Energy gap, 106, 121

Energy harvesting efficiencies, 17

Energy harvesting model, 15

Energy lost, 168

Enthalpy of formation, AHf, 288 Epitaxy, 24 EPS-Tenerife, 78 Equipotential lines, 335 EtaOpt, 3, 4 EUCLIDES™ ,78 Euler angles, 80 Excitation pathways, 163 Exponential smoothing, 78 External quantum efficiency, 104, 109, 119, 169

Extinction cross-section, 137

Fabry-Perot resonance, 146, 147, 149 FEMOS, 101, 111 Fermi level, 230, 293, 331 Fermi’s golden rule, 246 Ferromagnetic, 294 Finite-depth-well effective mass approximation, 296 Finite difference time domain, 108 Finite element method (FEM), 101 Flexure floor, 73 Foundation, 68 Fraunhofer ISE, 2

Frolich interaction Hamiltonian, 244 Front surface field (FSF), 5 Function F, 339

Ga, 312 GaAs, 5, 26

GaAs single-junction concentrator solar cell, 2 GaAs solar cells, 150 GaInNAs, 17 GaInP, 2

GaInP / GaAs dual-junction solar cell, 7,31 GaInP / GaInAs / Ge triple-junction solar cell, 14, 43

GaInP/GaAs dual-junction solar cell, 23 GaMnN, 311 GaN, 309 Ga2S3,289 GaS, 289 GaSe, 289 Ga2Se3, 289 Ge bottom cell, 9 Geotechnical analysis, 68 Ge substrate, 25, 28 Glancing-Incidence X-Ray Diffraction, GIXRD, 323

Glass transition temperature, 171 Global absorption, 142

Glove-box, 170

Grain boundaries, 281, 282

1D grating, 111

Grating equation, 110

Grid parity, 132

Groove period, 110

Guided mode, 134, 138, 139, 141, 144

Hall-effect, 287 Hall mobility, 339 3D-harmonic oscillator, 296 Haze, 98, 108, 109, 119 Heptamer (OF7), 161 Heterojunction, 343 High-concentration photovoltaics, 1 Hot carriers, 192 Hot excitons, 192

Hybrid multi-terminal configuration, 123 Hybrid sun tracking controllers, 77

IBSC, See Intermediate band Ideal efficiency of a multi-junction solar cell, 14

Ideality factors, 283, 285

I – III-VI2,281

II – VI QDs, 200

III – V multi-junction solar cells, 2, 23 III-V QDs, 200

III-V semiconductor, 193 Impact ionization, 193 Impurity approach, 287 Impurity bands, 287 InAlGaAs space layers, 253 InAs, 197, 201 InAs/GaAs QDs, 234 Incomplete selectivity of absorption coefficients, 286 InGaN, 309 InN, 314 InP, 197, 201 Intensity depence, 176 Intensity dependence of the UC, 160 Interband, 196 Interband tunneling, 5 Interdiffusion, 296, 298 Interference, 97, 116 Intermediate band, 209, 251 ab-initio, 225 bandwidth, 214 bulk systems, 215 chalcopyrite semiconductors, 253 deep centres, 220

dilute II-VI oxide semiconductors, 253 GaNAs, 222

highly mismatched alloys, 222, 253 In2S3, 223 InGaN, 220, 253 limiting efficiency, 209 metallization of solar cells, 268 model, 213

molecular approach, 223 optimum gaps, 252 photon selectivity, 215 quantum dot, 215, 216, 251 quantum dot die manufacture, 265 quantum efficiency, 217, 270 quantum wells, 217 quasi-Fermi levels, 214 role of the emitters, 212 silicon, 253 thin films, 220 two photon absorption, 272 voltage preservation, 211, 272 ZnTe, 222, 253

Intermediate band formation, 235 Intermediate band solar cell, 230, 321 Internal energy conversion channel, 168 Interstitial, 329

Inter-system crossing (ISC), 159

Intraband, 196

Intrinsic defects, 281

Inverse Auger, 193

Inverted methamorphic, 4, 25

Ion implantation, 322

IPCE curves, 184

IRL, intermediate reflecting layer, 147, 149 Isofoton, 67

IV – VI QDs, 200

Kinetic, 298

Knudsen cells, 312

Koopman spiral, 82

kppw code, 234, 249

k • p theory, 231, 232

Kretschmann configuration, 140, 150

KrF excimer laser, 323

Lambertian (cosine) function, 119 LA phonons, 245 Lateral current, 35, 39 Lattice-matched, 23, 25

Lattice-matched triple-junction solar cell, 2, 4, 17

Learning coefficient, 29

Least squares, 81 LED-like approach, 41 Levenberg-Marquardt, LM, 81 Light absorption, 106 Light emitting diode, LED, 53, 280 Light management, 124, 215 Light profile, 31, 33, 41 Light scattering, 96, 103, 106 Light trapping, 96, 103, 111, 132, 133, 144, 147,152

Limiting efficiency, 211 Linear function, 176 Local absorption, 142 Local mobility, 165 Local temperature, 177 Local viscosity, 171 LO-phonon, 244 LSC, 189

LSPP, localized surface plasmon polariton, 132, 133, 135, 136, 138, 141, 143, 144,148 LTSpice, 5, 8 Luminiscence, 283 Lumped equivalent circuit, 344

Magnetic properties, 294 Magnetoresistance, 287 Makov-Payne correction, 247 Material dispersion, 135 Maximum service wind speed, MSWS, 64 Maxwell equations, 101 MBE, See also Molecular beam epitaxy, 311, 312

^c-Si, 134, 149 ^c-Si bottom cell, 147 /xc-SiH, 101 Mean offsets, 88

Mean Time to Failure, MTTF, 53, 55 Metallated porphyrin macrocycles (MOEP), 159

Metallisation, 14 Metamorphic, 4

Metamorphic triple-junction solar cell, 12, 17

Method of discretisation, 100

Micromorph, 121

Minibands, 238, 294

Minimum enclosing circle, MEC, 71

Minority carrier, 283

Mn, 310

Model based calibrated approach, 77 Model free predictive approach, 77 Modulated photonic crystal, 117, 118 Molar concentration dependence, 179

Molar ratio, 173, 179

Molecular beam epitaxy, 251, 253, 278

Molecular couples, 186

Momentum, 194

Mott, 287

Mott limit, 344

Mott transition, 209, 215

MOVPE, 25

Multicomponent organic systems, 174 Multiexcitons, 196

Multijunction devices, 96, 121, 125, 184 Multijunction solar cell, 105, 121 Multilayer structures, 97 Multiple Exciton Generation, MEG, 191

Nanocrystalline, 327 Nanodisc, 145, 146, 148, 149 Nanoparticle, 112, 125, 133, 134, 138, 144-147

Nanostructure, 192, 294 Nanostructuring approach, 294 Nanotubes, 199 Nanowires, 296

Near field, 136, 137, 140, 144, 146 Neutral complex, 281 Nitrogen, 312 Noble metal, 297 Non-coherent excitation, 166 Non-coherent photons, 158 Non-radiative channels, 179 Non-radiative recombination, 285 Non-radiative relaxation channels, 175 Non-radiative scattering, 242 Non-radiatively, 176 Non-volatile, 171 Non-volatile solvent, 172, 180 Numerical modelling, 4 Numerical simulators, 100

Off-stoichiometry, 281 Oligomer, 161, 171 One axis tracking, 62 Open-circuit photocurrent, 188 Open-circuit voltage, 103 Open-loop controllers, 76 Optical losses, 96, 103, 104, 106, 113 Optical matrix element, 240 Optical modelling, 100, 124 Optical models, 100 Optical path, 97, 103, 106, 111 Optical phonons, 244 Optoelectronic, 29

Ordered vacancy compounds, 281 Organic dye, 187

Organic solar cell, 133, 141, 150, 151, 158 Oscillator strength, 240 Otto configuration, 140, 150 Oxygen, 170

PbS, 201 PbSe, 195, 197 PbTe, 197 PdTBP, 175 л-conjugated, 185 Peak current, 35, 36, 38 Pedestal tracker, 62 Perimeter, 30, 32, 41, 42, 55 Periodic array of QD’s, 231 Periodic Born-von Karman boundary conditions, 234 Periodic surface, 110 Periodic texturisation, 101 Permittivity, 135 PF film, 181 Phonon bottleneck, 244 Phonons, 244 Phosphorescence, 162 Photocharging, 197 Photocurrent, 103, 284 Photoluminescence, PL, 47, 197 Photon conversion, 185 Photon flux, 284

Photonic crystal, 96, 113, 116, 118 Photonic-crystal-like, 125 Photon management, 131-134, 136, 141, 142, 152

Photon-sorting, 240

Photoreflectance, 296

Piezoelectric field, 233

Plane wave (PW) methodology, 234

Plasma-assisted, 312

Plasma-enhanced, 312

Plasmons, 132, 215

Plastic foil substrates, 112

Pn-junctions, 14

Point defects, 281

Pointing vector, 80

Polar coupling, 244

Polar facets, 281

Polarity change, 341

Polarizability, 137

Polarizability of a sphere, 136

Polarons, 244

Polycrystalline, 327

Polymers, 201

Подпись: Q-band, 167, 175, 187 Q-band absorption, 173 QD, See Quantum dot QD array, 231 QD array Brillouin Zone, 237 QD array wavenumber, 237 Quadruple-junction solar cell, 17 Quantum dot QD, 191 capped, 259 capping, 257 InAs, 252, 256 multi-layer stacks, 260 photoluminescence, 260 seeded, 259 Quantum-dot solar cell, 294 Quantum efficiency, QE, 45, 106, 111 Quantum well, 192, 296 Quantum wire, 192 Quantum yields, 169, 170, 193 Quenched, 163 Q.Y., 181
Подпись: Sandia National Laboratories, 64 Sapphire, 312 Saturation current, 285, 286 Scalar scattering theory, 109 Scattered (diffused) light, 100 Scattering cross-section, 137, 144 Scattering order, 110 Schottky, 202 Schrodinger equations, 234 Secondary axis, 79 Semiconductor QD, 231 Sensitizer, 163 Sensitizer triplet, 166 Sentaurus TCAD, 5, 7 Series resistance, 27, 29, 43, 54 Sesonant tunnelling, 5 Sheet resistance, Rs, 329, 336 Shockley-Queisser, 192, 279 Short-circuit current density, 106 Si, 193, 197 SiC, 312 Six-junction solar cell, 17 Size scaling, 188 SMARTS, 15 Snell’s law, 107 Solar One plant, 76 Solar spectrum, 103 Solfocus, 72 Solid state thin polymer films, 165 Solubility, 294 Solubility limits, 288, 322 Solvothermal methods, 294 Soret-band, 175, 179 Space dimensions, 100 Spectral power density, 158 Spectral response, SR, 45 Spectrum splitting, 123, 125
Подпись: Radiative lifetime, 243 Radiative limit, 243, 278 Radiative recombination, 242 Random, 108 ranode, 38 Rare earth, 287 Rare-earth (RE) doped phosphors, 158 Ray-tracing, 101 Re-absorption, 175, 177 Recombination, 278 Recombination rate, 280 Record efficiency, 23 Recrystallization, 326 RE-doped crystalline glasses, 188 Red shifted, 242

Porous Si-oxide, 115 Positioning resolution, 64 Position Sensitive Device, PSD, 84 Poynting vector, 142 Primary axis, 79

Proportional-integral (PI) controller, 79 Pseudo-gap, 334 PSPICE, 336

PSPP, propagating surface plasmon polariton, 132, 133, 138, 140, 141, 150 Pulsed-Laser Melting, PLM, 322 Pump-probe, 196 PV modules, 99

Pyramidal-type SnO2:F superstrate, 110

Reflectance, 115 Reflection, 97

Reflection high energy electron difraction, See RHEED

Refractive index grading, 114 Refractive indices, 114 Reliability, 52-54 Residual oxygen, 170

Resonance wavelength, 135, 137, 138, 144, 146-149

Resonant frequency, 112 RHEED, 255

Root-mean-square-roughness, 98, 108 Rutherford backscattering spectrometry, RBS, 328

SPICE, 8

Spin-orbit interaction, 233

SPP, surface plasmon polariton, 132, 134, 152

Step-graded buffer, 9

Step-wise UC, 165

Stiffness, 67

Stow position, 64

Strain, 9, 12, 233

Strain compensated tunnel diodes, 13 Strain relaxation, 12 Structural bending, 66 Structural flexure, 68 Styrene matrix, 171 Sub-bandgap absorption, 123 Sub-linear, 177 Substitutional, 329 Substitutional impurities, 288, 294 SunDog®, 82 Sun ephemeris, 63 Sunlight concentration, 157 Sunlight focusing, 188 Sunlight-UC, 169

Sunlight UC organic solar cells, 183 Sun pointing sensor, 63 Sun sensor, 74 SunShine, 100, 115 SunSpear®, 84 Superlattice, 296 Superstrate, 99 Surface features, 108 Surface plasmon absorption, 116 Surface plasmon polaritons, 112 Surface reconstruction, 281 Surface treatments, 198 Surface-textured interfaces, 125

Tandem, 123

Tandem a-Si :H/^c-Si:H, 109 Tandem cell, 147 TCO substrate, 105 TE polarization, 241 Tetraanthraporphyrins, 185 Tetranaphthoporphyrins, 185 Textured interfaces, 96, 107 Texturisation, 97, 114 Thermalisation, 167 Thermalisation losses, 103, 121 Thermal stress, 185 Thermochemical, 289 Thickness, 103

Thin-film intermediate band solar cells (TF-IBSC), 277

Thin-film solar cells, 95, 124, 134, 150, 280

Threshold energy, 194

Tilt-roll tracker, 62

Time of Flight Secondary Ion Mass

Spectroscopy, ToF-SIMS, 323 Time-dependent perturbation theory, 246 Ti-Si phases, 325 Total reflection, 107 Tracking accuracy, 66 Tracking Accuracy Sensor, TAS, 84 Tracking error measurements, 77 Transient absorption, 196 Translational symmetry, 234 Transmission, 97

Transparency window, 167, 173, 175 Transparent conductive oxides, 96 Transport properties, 248 Trions, 198

Triple junction solar cell, 24, 45

Triplet harvesting, 175, 176

Triplet-triplet transfer (TTT), 161, 166

TTA-schema, 177

TTA-UC, 159

TTA-UCd, 188

Tunnel diode, 13

Tunnel diode models, 5

Tunneling, 331

Tunnel junction, 35, 45

Two axis tracking, 62

Two-photon absorption, 280

UC-couple, 177

UCd, 173, 186, 188

UC-pathway, 161

UC-sunlight concentrators, 157

UC-Гуре I, 163

UC-Гуре II, 163

Ultimate efficiency limit, 229

Ultra high concentration, UHCPV, 27, 39

Up-conversion (UC), 184

US National Climatic Center, 64

USNO MICA software, 87

Utilisation of the solar spectrum, 105, 106

Van der Pauw, 324 Van Hove singularities, 239 Vergards Law, 315 Virtual energetic levels, 167 Viscosity, 177, 180 Volatile organic solvent, 170

Wavelength-selective intermediate reflector, WSIR, 121, 123

Whisker, 297

White diffusive dielectrics, 116 White paint, 96, 119, 125 Wide gap semiconductors, 280 Wigner-Weisskopf description, 245 W-textured superstrate, 110

Wurtzite, 312

Zinc-blende film, 315 ZnTe, 283 ZnTe:O, 283

1 0 ( 2ЭФ 1 0 ( „дФ 1 й2Ф

— т r2TT C T – й sinв~ы C 2 TT = °- (5Л)

r2 or or r2 sin в ов ов r2 sin2 в о’2

The general solution to this equation reads as

1 n / b

Ф(Г; в,’) = EE’-r1 + d^k“(cos Oe’”" (5’2)

n=0m=0^ ‘

[1]Nowadays, the new efficiency record has been achieved by Solar Junction (April 2011). Its cell measured a peak efficiency of 43.5% at 418 suns.

[2] Luque-Heredia (H)

BSQ Solar. C/ del Vivero 5, 28040 Madrid, Spain e-mail: iluque@bsqsolar. com

A. B. Cristobal Lopez et al. (eds.), Next Generation of Photovoltaics,

Springer Series in Optical Sciences 165, DOI 10.1007/978-3-642-23369-2_3, © Springer-Verlag Berlin Heidelberg 2012

[3] See, for example, the programs of the past main photovoltaic conferences worldwide, http://www. photovoltaic-conference. com, http://www. ieee-pvsc. org.

[4]In fact, the open-circuit voltage of the intermediate band solar cell is slightly degraded under one – sun operation with respect to that of an equivalent, single gap device. Sunlight concentration helps recovering the voltage as limited by the main bandgap, according to detailed balance calculations of Marti and Luque [6].

[5]Remind that the expression “two-photon absorption” in the context of the intermediate band solar cell does not correspond to the traditional understanding of the three-particle process involving the simultaneous absorption of two photons via a virtual electronic state, as used in spectroscopy and fluorescence microscopy. See [9].

[6]a-Si and related concepts appear less suited for high efficiency concepts, mainly due to their intrinsic stability weaknesses under illumination and will not be considered further.

[7]For general references see, for example, [11].

[8]A good number of references on the issue of grain boundaries in thin film photovoltaic materials are collected in [14].

[9]Additionally, the width of the intermediate band within the bandgap of the host material is zero in the ideal case, see [35].

[10]Forthe case of hopping transport in chalcopyrites, see [41].

[11] K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, E. E. Haller, Appl. Phys. Lett. 88(9), 092110.1 (2006)

[12] A. Marti, A. Luque, Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization (Institute of Physics Publishing, Bristol, 2004)

[13] A. Luque, A. Marti, Phys. Rev. Lett. 78(26), 5014 (1997)

[14] W. Shockley, H. J. Queisser, J. Appl. Phys. 32(3), 510 (1961)

[15] A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, J. L. Balenzategui, Appl. Phys. Lett. 87(8), 083505.1

[16] K. M. Yu, M. A. Scarpulla, R. Farshchi, O. D. Dubon, W. Walukiewicz, Nuclear Instruments Methods Phys. Res. Section B-Beam Interactions with Mater. Atoms 261(1-2), 1150 (2007)

[17] N. F. Mott, Rev. Mod. Phys. 40(4), 677-683 (1968)

[18] E. M. Conwell, Phys. Rev. 103(1), 51 (1956)

[19] R. O. Carlson, Phys. Rev. 100(4), 1075 (1955)

[20] S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, G. A. Thomas, Phys. Rev. B 48(15), 11394 (1993)

[21] A. Gaymann, H. P. Geserich, H. Vonlohneysen, Phys. Rev. Lett. 71(22), 3681 (1993)

[22] S. Hocine, D. Mathiot, Appl. Phys. Lett. 53(14), 1269 (1988)

[23] A. Luque, A. Marti, E. Antolin, C. Tablero, Phys. B-Condens. Matter 382(1-2), 320 (2006)

[24] M. Hernandez, J. Venturini, D. Zahorski, J. Boulmer, D. Debarre, G. Kerrien, T. Sarnet, C. Laviron, M. N. Semeria, D. Camel, J. L. Santailler, Appl. Surface Sc. 208, 345 (2003)

Updated: August 25, 2015 — 9:47 am