Category: Solar Energy 5

DSSC coupled to 1DPC

Although the coupling of inverse opals to dye sensitized electrodes demonstrated an increased IPCE with respect to that of a reference cell (Nishimura et al., 2003), the main drawback of these 3D structures is the difficult assembly process to achieve reasonable reflecting periodic materials, which leads usually to thick structures (between 5-10 micron thick). This […]

Periodic structures

An alternative to the use of disordered structures to enhance diffuse light scattering is the introduction of porous materials in which a periodic variation of the refractive index has been built up. As it will be shown next, periodic structures allows to achieve high reflectance within the cell at targeted and well-defined wavelength ranges, which […]

Diffuse scattering layer

TiO2 working electrodes used in DSSC are composed of 20 nm size crystallites. These electrodes are essentially transparent since visible light is not scattered for titania particles of sizes on the order of the few tens of nanometers. In fact, the incident photons that are not absorbed by the dye sensitized electrode are either lost […]

Brief description of DSSC

Photovoltaic devices have become a promising alternative energy source in the last decades. They are expected to increasingly and significantly contribute to overall energy production over the coming years. The photovoltaic field, dominated mainly by inorganic solid-state junction cells, is now being challenged by the emergence of new devices based on nanocrystalline and conducting polymer […]